259 research outputs found

    The Genetic Basis of the Polycystic Ovary Syndrome

    Get PDF
    SUMMARY Polycystic ovary syndrome (PCOS) is a common, complex genetic disorder. Its inherited basis was established by studies demonstrating an increased prevalence of PCOS, hyperandrogenemia, insulin resistance, and disordered insulin secretion in relatives of women with PCOS. To date, efforts to elucidate the genetic basis of PCOS have focused on candidate genes chosen from logical pathways, including steroid synthesis and action, insulin sensitivity and secretion, obesity and fuel regulation, gonadotropin production and action, and, most recently, cardiovascular risk modifiers. Although several positive results have been reported, no gene or genes are universally accepted as important in PCOS pathogenesis, largely because of lack of replication of positive results. This has resulted, in part, from various factors, most importantly inadequate coverage of genes by the analysis of only one or two variants and of small study cohorts in many studies. In the future, optimal application of the candidate gene approach using haplotype-based analyses, intermediate phenotypes, and internal replication of positive results will enhance gene discovery in PCOS, as will the application of pharmacogenetics and whole-genome analysis

    Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study.

    Get PDF
    ObjectiveWe aimed to identify factors that are independently associated with the metabolic clearance rate of insulin (MCRI) and to examine the association of MCRI with incident type 2 diabetes in nondiabetic Hispanics and African Americans.Research design and methodsWe investigated 1,116 participants in the Insulin Resistance Atherosclerosis Study (IRAS) Family Study with baseline examinations from 2000 to 2002 and follow-up examinations from 2005 to 2006. Insulin sensitivity (S(I)), acute insulin response (AIR), and MCRI were determined at baseline from frequently sampled intravenous glucose tolerance tests. MCRI was calculated as the ratio of the insulin dose over the incremental area under the curve of insulin. Incident diabetes was defined as fasting glucose β‰₯126 mg/dL or antidiabetic medication use by self-report.ResultsWe observed that S(I) and HDL cholesterol were independent positive correlates of MCRI, whereas fasting insulin, fasting glucose, subcutaneous adipose tissue, visceral adipose tissue, and AIR were independent negative correlates (all P < 0.05) at baseline. After 5 years of follow-up, 71 (6.4%) participants developed type 2 diabetes. Lower MCRI was associated with a higher risk of incident diabetes after adjusting for demographics, lifestyle factors, HDL cholesterol, indexes of obesity and adiposity, and insulin secretion (odds ratio 2.01 [95% CI 1.30-3.10], P = 0.0064, per one-SD decrease in loge-transformed MCRI).ConclusionsOur data showed that lower MCRI predicts the incidence of type 2 diabetes

    Epigenetic Mechanism Underlying the Development of Polycystic Ovary Syndrome (PCOS)-Like Phenotypes in Prenatally Androgenized Rhesus Monkeys

    Get PDF
    The pathogenesis of polycystic ovary syndrome (PCOS) is poorly understood. PCOS-like phenotypes are produced by prenatal androgenization (PA) of female rhesus monkeys. We hypothesize that perturbation of the epigenome, through altered DNA methylation, is one of the mechanisms whereby PA reprograms monkeys to develop PCOS. Infant and adult visceral adipose tissues (VAT) harvested from 15 PA and 10 control monkeys were studied. Bisulfite treated samples were subjected to genome-wide CpG methylation analysis, designed to simultaneously measure methylation levels at 27,578 CpG sites. Analysis was carried out using Bayesian Classification with Singular Value Decomposition (BCSVD), testing all probes simultaneously in a single test. Stringent criteria were then applied to filter out invalid probes due to sequence dissimilarities between human probes and monkey DNA, and then mapped to the rhesus genome. This yielded differentially methylated loci between PA and control monkeys, 163 in infant VAT, and 325 in adult VAT (BCSVD P<0.05). Among these two sets of genes, we identified several significant pathways, including the antiproliferative role of TOB in T cell signaling and transforming growth factor-Ξ² (TGF-Ξ²) signaling. Our results suggest PA may modify DNA methylation patterns in both infant and adult VAT. This pilot study suggests that excess fetal androgen exposure in female nonhuman primates may predispose to PCOS via alteration of the epigenome, providing a novel avenue to understand PCOS in humans

    Components of Metabolic Syndrome and 5-Year Chance in Insulin Clearance - The Resistance Atherosclerosis Study (IRAS)

    Get PDF
    Aims Cross-sectional evidence indicates that abdominal adiposity, hypertension, dyslipidaemia and glycaemia are associated with reduced metabolic clearance rate of insulin (MCRI). Little is known about the progression of MCRI and whether components of metabolic syndrome are associated with the change in MCRI. In this study, we examined the association between components of metabolic syndrome and the 5-year change of MCRI. Methods At baseline and 5-year follow-up, we measured fasting plasma triglycerides (TG), high-density lipoprotein (HDL) cholesterol, blood pressure (BP), waist circumference (WC) and fasting blood glucose (FBG) in 784 non-diabetic participants in the Insulin Resistance Atherosclerosis Study. MCRI, insulin sensitivity (SI) and acute insulin response (AIR) were determined from frequently sampled intravenous glucose tolerance tests. Results We observed a 29% decline of MCRI at follow-up. TG, systolic BP and WC at baseline were inversely associated with a decline of MCRI regression models adjusted for age, sex, ethnicity, smoking, alcohol consumption, energy expenditure, family history of diabetes, BMI, SI and AIR [β =β€‰βˆ’0.057 (95% confidence interval, CI: βˆ’0.11, βˆ’0.0084) for TG, β =β€‰βˆ’0.0019 (95% CI: βˆ’0.0035, βˆ’0.00023) for systolic BP and β  =β€‰βˆ’0.0084 (95% CI: βˆ’0.013, βˆ’0.0039) for WC; all p \u3c 0.05]. Higher HDL cholesterol at baseline was associated with an increase in MCRI [multivariable-adjusted β = 0.0029 (95% CI: 0.0010, 0.0048), p = 0.002]. FBG at baseline was not associated with MCRI at follow-up [multivariable-adjusted β = 0.0014 (95% CI: βˆ’0.0026, 0.0029)]. Conclusions MCRI declined progressively over 5 years in a non-diabetic cohort. Components of metabolic syndrome at baseline were associated with a significant change in MCRI

    Genome-Wide Association Study Identifies Loci for Liver Enzyme Concentrations in Mexican Americans: The GUARDIAN Consortium.

    Get PDF
    ObjectivePopulations of Mexican American ancestry are at an increased risk for nonalcoholic fatty liver disease. The objective of this study was to determine whether loci in known and novel genes were associated with variation in aspartate aminotransferase (AST) (n = 3,644), alanine aminotransferase (ALT) (n = 3,595), and gamma-glutamyl transferase (GGT) (n = 1,577) levels by conducting the first genome-wide association study (GWAS) of liver enzymes, which commonly measure liver function, in individuals of Mexican American ancestry.MethodsLevels of AST, ALT, and GGT were determined by enzymatic colorimetric assays. A multi-cohort GWAS of individuals of Mexican American ancestry was performed. Single-nucleotide polymorphisms (SNP) were tested for association with liver outcomes by multivariable linear regression using an additive genetic model. Association analyses were conducted separately in each cohort, followed by a nonparametric meta-analysis.ResultsIn the PNPLA3 gene, rs4823173 (P = 3.44 × 10-10 ), rs2896019 (P = 7.29 × 10-9 ), and rs2281135 (P = 8.73 × 10-9 ) were significantly associated with AST levels. Although not genome-wide significant, these same SNPs were the top hits for ALT (P = 7.12 × 10-8 , P = 1.98 × 10-7 , and P = 1.81 × 10-7 , respectively). The strong correlation (r2  = 1.0) for these SNPs indicated a single hit in the PNPLA3 gene. No genome-wide significant associations were found for GGT.ConclusionsPNPLA3, a locus previously identified with ALT, AST, and nonalcoholic fatty liver disease in European and Japanese GWAS, is also associated with liver enzymes in populations of Mexican American ancestry

    Harnessing Expression Data to Identify Novel Candidate Genes in Polycystic Ovary Syndrome

    Get PDF
    Novel pathways in polycystic ovary syndrome (PCOS) are being identified in gene expression studies in PCOS tissues; such pathways may contain key genes in disease etiology. Previous expression studies identified both dickkopf homolog 1 (DKK1) and DnaJ (Hsp40) homolog, subfamily B, member 1 (DNAJB1) as differentially expressed in PCOS tissue, implicating them as candidates for PCOS susceptibility. To test this, we genotyped a discovery cohort of 335 PCOS cases and 198 healthy controls for three DKK1 single nucleotide polymorphisms (SNPs) and four DNAJB1 SNPs and a replication cohort of 396 PCOS cases and 306 healthy controls for 1 DKK1 SNP and 1 DNAJB1 SNP. SNPs and haplotypes were determined and tested for association with PCOS and component phenotypes. We found that no single nucleotide polymorphisms were associated with PCOS risk; however, the major allele of rs1569198 from DKK1 was associated with increased total testosterone (discovery cohort Pβ€Š=β€Š0.0035) and dehydroepiandrosterone sulfate (replication cohort Pβ€Š=β€Š0.05). Minor allele carriers at rs3962158 from DNAJB1 had increased fasting insulin (discovery cohort Pβ€Š=β€Š0.003), increased HOMA-IR (discovery cohort Pβ€Š=β€Š0.006; replication cohort Pβ€Š=β€Š0.036), and increased HOMA-%B (discovery cohort Pβ€Š=β€Š0.004). Carriers of haplotype 2 at DNAJB1 also had increased fasting insulin, HOMA-IR, and HOMA-%B. These findings suggest that genetic variation in DKK1 and DNAJB1 may have a role in the hyperandrogenic and metabolic dysfunction of PCOS, respectively. Our results also demonstrate the utility of gene expression data as a source of novel candidate genes in PCOS, a complex and still incompletely defined disease, for which alternative methods of gene identification are needed

    Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest types of cancer. The worldwide estimates of its incidence and mortality in the general population are eight cases per 100,000 person-years and seven deaths per 100,000 person-years, and they are significantly higher in the United States than in the rest of the world. The incidence of this disease in the United States is more than 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase dramatically to become the second leading cause of cancer-related deaths before 2030. Considering the failure to date to efficiently treat existing PDAC, increased effort should be undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC development is of utmost importance to identify and formulate preventive strategies. Large epidemiologic and cohort studies have identified risk factors for the development of PDAC, including obesity and type 2 diabetes mellitus. This review highlights the current knowledge of obesity and type 2 diabetes as risk factors for PDAC development and progression, their interplay and underlying mechanisms, and the relation to diet. Research gaps and opportunities to address this deadly disease are also outlined

    FTO and MC4R Gene Variants Are Associated with Obesity in Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility in women. It is also associated with metabolic disturbances that place women at increased risk for obesity and type 2 diabetes. There is strong evidence for familial clustering of PCOS and a genetic predisposition. However, the gene(s) responsible for the PCOS phenotypes have not been elucidated. This two-phase family-based and case-control genetic study was designed to address the question of whether SNPs identified as susceptibility loci for obesity in genome-wide association studies (GWAS) are also associated with PCOS and elevated BMI. Members of 439 families having at least one offspring with PCOS were genotyped for 15 SNPs previously shown to be associated with obesity. Linkage and association with PCOS was assessed using the transmission/disequilibrium test (TDT). These SNPs were also analyzed in an independent case-control study involving 395 women with PCOS and 176 healthy women with regular menstrual cycles. Only one of these 15 SNPs (rs2815752 in NEGR1) was found to have a nominally significant association with PCOS (Ο‡2β€Š=β€Š6.11, Pβ€Š=β€Š0.013), but this association failed to replicate in the case-control study. While not associated with PCOS itself, five SNPs in FTO and two in MC4R were associated with BMI as assessed with a quantitative-TDT analysis, several of which replicated association with BMI in the case-control cohort. These findings demonstrate that certain SNPs associated with obesity contribute to elevated BMI in PCOS, but do not appear to play a major role in PCOS per se. These findings support the notion that PCOS phenotypes are a consequence of an oligogenic/polygenic mechanism

    General Framework for Meta-Analysis of Haplotype Association Tests

    Get PDF
    For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.Generation Scotland: Generation Scotland received core funding from the Chief Scientist Office of the Scottish Government Health Directorate CZD/16/6 and the Scottish Funding Council HR03006. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland, and was funded by the UKΓ’s Medical Research Council. Ethics approval for the study was given by the NHS Tayside committee on research ethics (reference 05/S1401/89). We are grateful to all the families who took part, the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants and nurses. FamHS: Family Heart Study was supported by NIH grants RO1-HL-087700 and RO1-HL-088215 (M.A.P., PI) from NHLBI, and RO1-DK-8925601 and RO1-DK-075681 (I.B.B., PI) from NIDDK. MESA: MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, and UL1-TR-000040. Funding for SHARe genotyping was provided by NHLBI contract N02-HL-64278. Funding for MESA Family was provided by grants R01-HL-071051, R01-HL-071205, R01-HL-071250, R01-HL-071251, R01-HL-071252, R01-HL-071258, R01-HL-071259, and UL1-RR-025005. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. FHS: Framingham Heart Studyβ€”Genotyping, quality control, and calling of the Illumina HumanExome BeadChip in the Framingham Heart Study was supported by funding from the National Heart, Lung and Blood Institute, Division of Intramural Research (Daniel Levy and Christopher J. OΓ’Donnell, Principle Investigators). A portion of this research was conducted using the Linux Clusters for Genetic Analysis (LinGA) computing resources at Boston University Medical Campus. Also supported by National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) R01 DK078616, NIDDK K24 DK080140, and American Diabetes Association Mentor-Based Postdoctoral Fellowship Award #7-09-MN-32, all to Dr. Meigs. FENLAND: The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team, and the Epidemiology Field, Data and Laboratory teams. EPIC-Potsdam: We thank all EPIC-Potsdam participants for their invaluable contribution to the study. The study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.). The recruitment phase of the EPIC-Potsdam study was supported by the Federal Ministry of Science, Germany (01 EA 9401) and the European Union (SOC 95201408 05 F02). The follow-up of the EPIC-Potsdam study was supported by German Cancer Aid (70-2488-Ha I) and the European Community (SOC 98200769 05 F02). Furthermore, we thank Dr. Manuela Bergmann who was responsible for the methodological and organizational work of data collections of exposures and outcomes and Wolfgang Fleischhauer for his medical expertise that was employed in case ascertainment and contacts with the physicians and Ellen Kohlsdorf for data management. CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL103612, HL068986 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/gepi.2195
    • …
    corecore